Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
translated by 谷歌翻译
我们提出了一种新的多功能增强学习的新型政策梯度方法,其利用了两个不同的差异减少技术,并且不需要在迭代上进行大量批次。具体而言,我们提出了一种基于势头的分散策略梯度跟踪(MDPGT),其中使用新的基于动量的方差减少技术来接近具有重要性采样的本地策略梯度代理,并采用中间参数来跟踪两个连续的策略梯度代理。此外,MDPGT可证明$ \ mathcal {o}的最佳可用样本复杂性(n ^ { - 1} \ epsilon ^ {-3})$,用于汇聚到全球平均值的$ \ epsilon $ -stationary点n $本地性能函数(可能是非旋转)。这优于在分散的无模型增强学习中的最先进的样本复杂性,并且当用单个轨迹初始化时,采样复杂性与现有的分散的政策梯度方法获得的样本复杂性匹配。我们进一步验证了高斯策略函数的理论索赔。当所需的误差容忍$ \ epsilon $足够小时,MDPGT导致线性加速,以前已经在分散的随机优化中建立,但不是为了加强学习。最后,我们在多智能体增强学习基准环境下提供了实证结果,以支持我们的理论发现。
translated by 谷歌翻译
可靠的交通流量预测对于创建智能运输系统至关重要。已经开发出许多基于大数据的预测方法,但他们在考虑时间和地点的道路之间没有反映复杂的动态相互作用。在这项研究中,我们提出了一种动态定位的长短期记忆(LSTM)模型,涉及道路之间的空间和时间依赖。为此,我们使用局部动态空间权重矩阵以及其动态变化。此外,LSTM模型可以处理具有长依赖性的顺序数据以及复杂的非线性功能。经验结果表明,与两种不同的基线方法相比,所提出的模型的卓越预测性能。
translated by 谷歌翻译
多样性最大化是数据汇总,Web搜索和推荐系统中广泛应用的基本问题。给定$ n $元素的$ x $元素,它要求选择一个$ k \ ll n $元素的子集$ s $,具有最大\ emph {多样性},这是由$ s $中元素之间的差异量化的。在本文中,我们关注流媒体环境中公平限制的多样性最大化问题。具体而言,我们考虑了最大值的多样性目标,该目标选择了一个子集$ s $,该子集$ s $最大化了其中任何一对不同元素之间的最小距离(不同)。假设集合$ x $通过某些敏感属性(例如性别或种族)将$ m $ discoint组分为$ m $ discoint组,确保\ emph {fairness}要求所选的子集$ s $包含每个组$ i的$ k_i $ e元素\在[1,m] $中。流算法应在一个通过中顺序处理$ x $,并返回具有最大\ emph {多样性}的子集,同时保证公平约束。尽管对多样性的最大化进行了广泛的研究,但唯一可以与最大值多样性目标和公平性约束的唯一已知算法对数据流非常低效。由于多样性最大化通常是NP-HARD,因此我们提出了两个在数据流中最大化的公平多样性的近似算法,其中第一个是$ \ frac {1- \ varepsilon} {4} {4} $ - 近似于$ m = 2 $,其中$ \ varepsilon \ in(0,1)$,第二个实现了$ \ frac {1- \ varepsilon} {3m+2} $ - 任意$ m $的近似值。现实世界和合成数据集的实验结果表明,两种算法都提供了与最新算法相当的质量解决方案,同时在流式设置中运行多个数量级。
translated by 谷歌翻译
快速生产具有纳米分辨率的大面积模式对于已建立的半导体行业和实现下一代量子设备的工业规模生产至关重要。具有二进制全息掩模的亚稳定原子光刻被认为是当前最新水平的较高分辨率/低成本替代方法:极端紫外线(EUV)光刻。然而,最近表明,亚稳定原子与掩模材料(SIN)的相互作用导致波前的强烈扰动,而不是基于经典标量波。这意味着即使在1D中也无法在分析上解决逆问题(基于所需模式创建掩码)。在这里,我们提出了一种机器学习方法,以掩盖产生的目标是亚稳定性原子。我们的算法结合了遗传优化和深度学习来获得面具。一种新型的深神经结构经过训练,可以产生面膜的初始近似。然后,该近似值用于生成可以收敛到任意精度的遗传优化算法的初始种群。我们证明了Fraunhofer近似极限内系统维度的任意1D模式的产生。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
时间序列对齐方法要求高度表达,可区分和可逆的翘曲功能,这些功能保留时间拓扑,即差异性。可以通过普通微分方程(ODE)控制的速度场的集成来产生差异翘曲函数。基于梯度的优化框架包含差异转换需要根据模型参数(即灵敏度分析)计算微分方程解决方案的衍生物。不幸的是,深度学习框架通常缺乏自动差异兼容的灵敏度分析方法。和隐式功能,例如ODE的解决方案,都需要特殊护理。当前的解决方案吸引了伴随灵敏度方法,临时数值求解器或Resnet的Eulerian离散化。在这项工作中,我们在连续的分段(CPA)速度函数下呈现ODE溶液及其梯度的封闭式表达。我们提出了对CPU和GPU结果的高度优化实现。此外,我们在几个数据集上进行了广泛的实验,以验证模型对时间序列关节对齐的看不见数据的概括能力。结果在效率和准确性方面表现出显着改善。
translated by 谷歌翻译
归纳转移学习旨在通过利用源任务中的预训练模型来从少量培训数据中学习目标任务。大多数涉及大规模深度学习模型的策略采用预先培训的模型和进行目标任务进行初始化。但是,当使用过度参数化模型时,我们通常可以在不牺牲源任务的准确性的情况下修剪模型。这促使我们采用模型修剪来通过深度学习模型进行转移学习。在本文中,我们提出了PAC-NET,这是一种简单而有效的方法,用于基于修剪的转移学习。 PAC-NET由三个步骤组成:修剪,分配和校准(PAC)。这些步骤背后的主要思想是确定源任务的基本权重,通过更新基本权重来微调源任务,然后通过更新剩余的冗余权重来校准目标任务。在各种广泛的感应转移学习实验集中,我们表明我们的方法通过很大的边距实现了最先进的性能。
translated by 谷歌翻译
许多科学和技术问题与优化有关。其中,高维空间中的黑盒优化尤其具有挑战性。最近基于神经网络的黑盒优化研究表明了值得注意的成就。但是,它们在高维搜索空间中的能力仍然有限。这项研究提出了一种基于进化策略(ES)和生成神经网络(GNN)模型的黑盒优化方法。我们设计了该算法,使ES和GNN模型合作起作用。该混合模型可以对替代网络进行可靠的培训;它优化了多目标,高维和随机黑框函数。我们的方法优于本实验中的基线优化方法,包括ES和贝叶斯优化。
translated by 谷歌翻译
Federated learning is growing fast in academia and industries as a solution to solve data hungriness and privacy issues in machine learning. Being a widely distributed system, federated learning requires various system design thinking. To better design a federated learning system, researchers have introduced multiple patterns and tactics that cover various system design aspects. However, the multitude of patterns leaves the designers confused about when and which pattern to adopt. In this paper, we present a set of decision models for the selection of patterns for federated learning architecture design based on a systematic literature review on federated learning, to assist designers and architects who have limited knowledge of federated learning. Each decision model maps functional and non-functional requirements of federated learning systems to a set of patterns. We also clarify the trade-offs in the patterns. We evaluated the decision models by mapping the decision patterns to concrete federated learning architectures by big tech firms to assess the models' correctness and usefulness. The evaluation results indicate that the proposed decision models are able to bring structure to the federated learning architecture design process and help explicitly articulate the design rationale.
translated by 谷歌翻译